向科学技術振興財団 研究助成成果報告書

プレオーガナイズ空間を持つ超分子有機結晶によるハロアルカンの

分離法の構築

Development of separation method using a supramolecular organic crystal with preorganized space

助成年度	令和5年度研究助成		
助成番号	MZR2023007		
研究期間	2023/04/01 ~ 2024/03/31		
代表研究者	山田 学 (Manabu Yamada)		
	秋田大学 大学院理工学研究科 物質科学専攻 応用化学コース		
共同研究者	片桐 洋史 (Hiroshi Katagiri) 山形大学 大学院有機材料システム研究科		

キーワード チアカリックスアレーン、有機結晶、ハロアルカン

1. 研究の背景と目的

アルカンをハロゲン化することにより合成さ れるハロアルカンは、医・農薬、高分子などを製 造する上でとても重要な原料である。一方、ハロ アルカンの合成では、構造異性体の生成が起こり、 分離が必要となる。ハロアルカンの精製は、一般 的な蒸留では難しく、抽出蒸留や共沸蒸留の特殊 な方法が適用されている。しかし、これら精製法 では、膨大な熱エネルギー消費を伴うという課題 がある。

これまでに我々が発見した、図1に示すプレオ ーガナイズ空間を有するチアカリックスアレー ン(1)を基本構造とした有機結晶(1·CyC6)は、 シクロヘキサンを鋳型としたチャネル構造を有 する¹⁾。この結晶を、減圧下で加熱し、結晶中か らシクロヘキサンを除去することで活性化した 結晶(1α)が得られる。この活性化結晶 1α を

図1 チアカリックスアレーン分子1とシクロヘキサンにより構築した超分子有機結晶(1・CyC6)

利用することで、特定のサイズと形状のアルカン を認識して選択的に取り込むことをこれまでの 我々の研究で明らかにしている¹⁻³⁾。本結晶が有 する分子の形状やサイズ認識能力を利用するこ とで、ある特定のサイズと形状を持つハロアルカ ンに対しても特異的な吸着の発現が期待できる のであれば、膨大な熱エネルギー消費せずともハ ロアルカンを分離できる新たな材料になること が期待できる。

^{−般財団法人} 向科学技術振興財団

図2 本研究で対象としたクロロアルカンの構造式

本研究では、直鎖や分岐、環状のハロアルカン の蒸気に対する吸着特性を調査し、粉末 X 線回折 や単結晶 X 線構造解析から結晶内のどの位置にハ ロアルカンが保持されているのか明らかにする と共にクロロアルカンの分離特性を評価するこ とを目的とした。

2. 研究の内容・方法

図2に本研究で評価したクロロアルカンを示す。 これらクロロアルカンを対象に蒸気吸着実験を、 図3に示すように実施した。今回、中蓋のあるバ イアル瓶を採用し、それぞれクロロアルカンを4 mLを入れ、その中に活性化結晶1αが0.2gを 入れたサンプル管を置いてしっかりと密閉し、室 温で静置させた。その後、各クロロアルカンを接 触させた1αを取り出し、^H NMR 測定により各ク ロロアルカンの吸着量を求めた。

3.研究の成果

図2に示す8種類のクロロアルカンの中で、1-クロロプロパンや1-クロロペンタン、2-クロロプ ロパンは活性化結晶1αに吸着されなかった。吸 着されたなかった理由として、本活性化結晶1α はある特定のサイズと形状を持つアルカンが接

図3 バイアルを利用した蒸気吸着実験

図45種類のクロロアルカンの飽和吸着量と接触時間の関係

触することで吸着サイトが再生しながら吸着現 象が起こることが原因である^{1,2)}。1-クロロプロ パンや1-クロロペンタンは直鎖構造の形状、分岐 構造を持つ 2-クロロプロパンのサイズや形状が 吸着サイトの再構築に適さなかったと考えられ る。一方、その他の5種類のクロロアルカンはす べて吸着されるという結果となった。これらクロ ロアルカンの吸着の有無は、チアカリックスアレ ーンを基本構造とした有機結晶が持つプレオー ガナイズ空間のサイズや形状に吸着サイトの再 構築に適合するか否かに依存するのではないか と推測している。

この結果をもとに、活性化結晶1αにより吸着 されるクロロアルカンの吸着量が飽和に達する 時間について調査した。図4は、接触時間に対す る各クロロアルカンの吸着割合をプロットした ものである。ここで、クロロアルカンの吸着割合 はチアカリックスアレーン(1)の1分子(1 mol) に対するクロロアルカンのモルで示している。 以前の中間報告では、接触時間がある程度経過し た後に急激な吸着があるなど、理想的な吸着挙動 ではない結果が示された。一方、今回の実験結果 では、各クロロアルカンの蒸気接触時間が増加す るにつれて段階的に吸着量が増えていくことが 確認され、理想的な吸着が観測された。中間報告 での結果の違いを追究したところ、以前に使用し ていたサンプル瓶の蓋が蒸気接触実験を行って いる最中に変形していることがわかった。図4で 示した吸着結果は、図3の写真の通り、 蓋が頑丈

表1 単一成分系クロロアルカン蒸気吸着試験結果

	最大吸着量 (mol)	飽和時間 (min)
1-クロロ-2-メチル プロパン	0.59	30
2-クロロ-2-メチル プロパン	0.62	60
2-クロロブタン	0.65	60
クロロシクロペンタン	0.61	90
クロロシクロヘキサン	0.61	60

であり、確実に密閉できるサンプル瓶を使用して 実施することにより得られた。つまり、前回使用 したサンプル瓶の蓋の変形により、サンプル瓶内 を完全に密閉することができず、各クロロアルカ ンの蒸気が容器外へ漏れたことにより飽和蒸気 圧まで到達させることができなかったことが吸 着に大きな影響を及ぼしたのではないかと判断 した。

図4のプロットから、最大吸着量(mol)と飽和 時間 (min) を求めることができ、表1のそれぞれ の結果をまとめた。まず、各クロロアルカンは最 大吸着分子量 0.6 mol 程度であることが明らか となった。これは我々が以前にアルカンの吸着で 報告したアルカンの吸着量と同等であった^{1,2)}。 また、1-クロロ-2-メチルプロパンが最も速く吸 着され、最大吸着量となる時間は30分であった。 一方、2-クロロ-2-メチルプロパンや 2-クロロブ タンは 60 分となった。対照的に環状クロロアル カンのクロロシクロペンタンやクロロシクロへ キサンの最大吸着量は 90 分で到達した。この吸 着量が飽和になる時間の違いは取り込まれるク ロロアルカンの分子サイズに依存すると推測さ れる。今後詳細な検討が必要となるが、より空間 サイズに近いものを優先的に吸着するものと考 えられ、分子サイズが大きいクロロシクロアルカ ンは最大吸着量に達する接触時間が他のクロロ アルカンよりも時間を要することが明らかとな った。吸着される分子のサイズに関する調査は、

図 5 1-クロロブタン(1-CBU)/2-クロロブタン(2-CBU)混 合成分系の時間における吸着分子量の変化

引き続き行っていく必要があり、実験結果を積み 重ね、さらに精査する予定である。

次に、クロロアルカンの選択的な分離が可能で あるか検討するため、二成分系クロロアルカンか らの吸着実験を行った。今回の研究で選定したク ロロアルカンは、単独蒸気では吸着されなかった 1-クロロブタンと吸着された 2-クロロブタンで ある。図5に示すように、2-クロロブタンが優先 的に吸着される一方、1-クロロブタンも最終的に は20%ほど吸着されることが確認された。単独蒸 気では吸着されなかった 1-クロロブタンが吸着 された理由として、おそらく 2-クロロブタンが 1αに吸着されることによって吸着サイトの復元 が起こり、その周辺に存在する1-クロロブタンも 復元された吸着サイトへ取り込まれたものと考 えられる。選択的な分離として、全体的な吸着量 は多くないが、20分程度の暴露時間であれば可能 であると考えられる。今後の実験では、その他の クロロアルカン2種を組み合わせた混合蒸気から の吸着実験を行うとともに、活性化結晶 1α が特 定のクロロアルカンを選択に取り込むか評価す る予定である。

次に、活性化結晶 1 α がクロロアルカンを結晶 中のどの位置で取り込んでいるか解明するため、 粉末 X 回折 (PXRD) 測定による結晶構造の解析を 行った。図 6 には、活性化結晶 1 α とチアカリッ クスアレーン有機結晶の 1 · CyC6、各クロロアルカ

図6 活性化結晶 1α および調製直後の 1·CyC6 結晶、 各クロロアルカンの蒸気に曝した後の 1α の粉末 X 線回 折(PXRD)パターン

ンの蒸気に曝した後の 1 α の PXRD パターンを示 している。活性化結晶 1 α の PXRD パターンと比 較すると各クロロアルカンの蒸気に曝した後の 1 α の PXRD パターンは異なっており、結晶性を取 り戻している様子が観測された。一方、1・CyC6 の PXRD パターンと各クロロアルカンの蒸気に曝し た後の 1 α の PXRD パターンを比較すると、それ ぞれで観測されるピーク位置も一致しており、同 様の PXRD パターンが確認できた。このことから、 各クロロアルカンは、1・CyC6 結晶のシクロへキサ ンが取り込まれている位置と同様の場所に取り 込まれていることが明らかとなった。

次いで、活性化結晶 1 α に取り込まれた各クロ ロアルカンの放出温度を熱分析 (TGA) により測定 することで、1 α の保持能力を評価した。その結 果を図 7 に示す。2-クロロブタンをはじめ、1-ク ロロ-2-メチルプロパンの放出温度は、70 °C と 92 °C であり、クロロシクロペンタンやクロロシ クロヘキサンと比較しても放出温度が低い (106 °C と 170 °C)。2-クロロ-2-メチルプロパンでは、 114 °C とクロロシクロペンタンよりも放出温度 が高い値となった。活性化結晶 1 α は、クロロシ クロヘキサン>2-クロロ-2-メチルプロパン>ク

図7 熱分析(TGA)による活性化結晶 1α に取り込ま れた各クロロアルカンの放出温度の測定

ロロシクロペンタン>1-クロロ-2-メチルプロパ ン>2-クロロブタンの順で安定的にクロロアル カンを保持できることがわかった。

研究期間中に単結晶を作製し、単結晶 X 線構造 解析を行う予定であったが、単結晶化までは到達 できなかった。今後、単結晶化できる研究を進め る予定である。現在の状況としては、図 8 の写真 で示す通りであり、吸着を示したクロロアルカン に活性化結晶 1 α を溶解し、揮発法による結晶化 を試みている段階である。

図8 単結晶の作製の様子

4.結び

本研究では、チアカリックスアレーン分子が集 合して形成する超分子有機結晶によるクロロア ルカンの蒸気吸着特性の評価を行い、吸着される クロロアルカンの分子のサイズや形状に関する 特徴を明らかにすることができた。さらに、二成 分系クロロアルカンからの吸着実験では、接触時 間を調整することで特定のクロロアルカンを分 離できる可能性を見出すことができた。また、吸 着メカニズムについてもある程度予想すること ができた。今後、本超分子有機結晶はクロロアル カン異性体の分離に利用できる可能性を秘めて いると考えられる。

5. 今後の研究方向性・課題

現在、クロロアルカンが結晶中のどの位置に取 り込まれているかを調査するため、各クロロアル カンを取り込んだ結晶の作製を行っている段階 であり、単結晶化に成功したものは、直ちに単結 晶 X線構造解析により、構造を明らかにする予定 であり、結晶中のどの位置に取り込まれたか特定 する。また、様々なクロロアルカンを混合した系 から選択的な吸着が可能であるが調査するとと もに、効率的な分離条件の精査を行う予定である。

6. 参考文献

1) Yamada, M.; Uemura, F.; Kunda, U.M.R.; Tanno, T.; Katagiri, H.; Hamada, F. "Alkane Shape- and Size-Recognized Selective Vapor Sorption in "Channel-Like" Crystals Based on Thiacalixarene Assemblies", *Chem. Eur. J.*, Vol. 26, pp. 8393-8399 (2020).

2) Yamada, M.; Uemura, F.; Katagiri, H., Akimoto, K., Hamada, F. "Selective Separation of Branched Alkane Vapor by Thiacalixarene Supramolecular Crystals Having Shape-Recognition Properties", *Chem. Commun.*, Vol. 57, 6237-6240 (2021).

3) Yamada, M.; Yoshizaki, R.; Uemura, F.;
Katagiri, H., Kato, S., Akimoto, K., Hamada,
F. "Facile separation of cyclic aliphatic and

aromatic vapors using crystalline thiacalixarene assemblies with preorganized channels", *Chem. Commun.*, Vol. 59, 2604-2607 (2023).

7. 論文・発表

現在、研究内容の一部をまとめ、論文を投稿して いる段階である。

Manabu Yamada, Ruka Yoshizaki, Hiroshi Katagiri, Kazuhiko Akimoto and Fumio Hamada, Crystalline thiacalixarene assembly for adsorption ability toward linear and branched C6 alkane vapor isomers, Submitted.